Material Safety Data Sheet

Tinidazole

sc-205862

Hazard Alert Code

Key:
EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Tinidazole

STATEMENT OF HAZARDOUS NATURE

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Nitroimidazole with antiprotozoal activity, effective against Trichomonas vaginalis, Entamoeba histolytica and Giardia lamblia; also active against anaerobic bacteria. Given by mouth for post-operative anaerobic and acute gum infection, for example. Intermediate

SYNONYMS
C8-H13-N3-O4-S, "imidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-", "imidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-", 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole, ethyl[2-(2-methyl-5-nitro-1H-imidazolyl)ethyl]sulfone, ethyl[2-(2-methyl-5-nitro-1H-imidazolyl)ethyl]sulfone, "1H-imidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-", "1H-imidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-", "1H-imidazole, 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-", Bioshick, CP-12574, CP12574, Fasigin, Fasigyn, Pletil, Simplotan, Sorquetan, Tinidazol, Tricolam, Trimonase, antiprotozoal/, "antiaemobic/ antiamebic/ antibacterial/ bactericide", "amoebiasis/ trichomoniasis/ trypanosomiasis/ giardia treatment"

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
RISK
Limited evidence of a carcinogenic effect.
Harmful by inhalation, in contact with skin and if swallowed.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or produce serious damage to the health of the individual. Aromatase inhibitors (including triazoles and azoles) produce several side effects including mood swing, depression, weight gain, hot flushes, vaginal dryness, bloating, early onset of menopause. Long-term use may result in bone weakness, increased risk of blood clots, gastrointestinal disturbance, and sweats.

Aromatase inhibitors lower the level of oestrogen in post-menopausal women who have hormone-receptor-positive breast cancer. Prior to menopause, oestrogen is mostly produced in the ovaries. Post-menopause women produce oestrogen from another hormone, androgen. Aromatase inhibitors prevent the enzyme, aromatase from catalysing this reaction. Breast cancer cell growth in post-menopausal women is stimulated by oestrogen.

Some 5-nitroimidazole derivatives, typically metronidazole, produce side-effects when given therapeutically: these include gastrointestinal discomfort, anorexia, nausea, coated tongue, dry mouth and unpleasant taste, headache, pruritis (itchiness), skin rash and occasionally vomiting, ataxia (loss of coordination), depression, insomnia, drowsiness, urethral discomfort and darkening of the urine. Therapeutic use of metronidazole has produced diarrhea, epigastric disorders, abdominal cramps, constipation, proctitis, metallic taste, furry tongue, glossitis and stomatitis, dysuria, sense of pelvic pressure, decreased libido, gynaecomastia, numbness and encephalopathy. Jaundice and liver dysfunction have been reported following exposure to metronidazole. Central nervous system effects may also result in headache, dizziness, incoordination, insomnia, irritability, depression, weakness, syncope and convulsions. High doses of metronidazole produced infertility in male rats.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

■ Skin contact with the material may be harmful; systemic effects may result following absorption.

■ The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

■ Open cuts, abraded or irritated skin should not be exposed to the material.

■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful.

■ The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

CHRONIC HEALTH EFFECTS

■ There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

■ Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

■ Imidazole is structurally related to histamine and has been used as an antagonist to counteract the effects of excess histamine found in certain induced physiological conditions (it therefore acts as an antihistamine).

■ Imidazoles have been reported to disrupt male fertility through disruption of testicular function. 2-Methylimidazole decreased luteinising hormone secretion and tissue interstitial fluid testosterone concentration two hours after injection into Sprague Dawley rats.

■ Imidazoles bind to cytochrome P450 haeme, resulting in inhibition of catalysis. However, 2-substituted imidazoles are considered to be poor inhibitors. Imidazole is probably an inducer of cytochrome P450E1. In general, inducers of this isozyme stabilise the enzyme by preventing phosphorylation of a serine which leads to haeme loss.

Several drugs containing an imidazole moiety were retained and bound in connective tissue when administered to laboratory animals. The bound material was primarily recovered from elastin (70%) and the collagen. It is postulated that reaction with aldehydes gives an aldol condensation product.

■ Azole fungicides show a broad antifungal activity and are used either to prevent fungal infections or to cure an infection. Therefore, they are important tools in integrated agricultural production. According to their chemical structure, azole compounds are classified into triazoles and imidazoles; however, their antifungal activity is due to the same molecular mechanism. The cell membrane assembly of fungi and yeast is disturbed by blocking the synthesis of the essential membrane component ergosterol. This fundamental biochemical mechanism is the basis for the use of azole fungicides in agriculture and in human and veterinary antifungal therapies. Enzymes in ergosterol synthesis are inhibited. The enzyme involved is sterol 14α-demethylase, which is found in several phyla. In mammals, it converts lanosterol into the meiosis-activating sterols (MAS) which regulate or modify cell division. These precursors of cholesterol have been discovered to moderate the development of male and female germ (sexual) cells. Several metabolites of lanosterol have been regarded only as precursors of cholesterol without any biological function in animals. This view dramatically changed recently with the observation that FF–MAS isolated from human follicle fluid and T–MAS isolated from human testis as well as the MAS and MAS–414 induced resumption of meiosis in cultivated mouse oocytes (Bryskov et al. 1995).

Aromatase is another target enzyme of azole compounds. In steroidogenesis, it converts androgens into the corresponding oestrogens. The importance of androgens and oestrogens for the development of reproductive organs, for fertility, and in certain sex steroid-dependent diseases is well known. Therefore, azole compounds can be directed against aromatase to treat...
oestrogen-responsive diseases. Based on the inhibitory activity of azoles on key enzymes involved in sex steroid hormone synthesis, it is likely that effects on fertility, sexual behavior, and reproductive organ development will occur depending on dose level and duration of treatment of laboratory animals. Several azole compounds were shown to inhibit the aromatase and to disturb the balance of androgens and estrogens in vivo. In fact, the clinical use of azole compounds in estrogen-dependent diseases is based on this effect. Additionally, azole antifungals developed to inhibit the sterol 14[alpha]-demethylase of fungi and yeast in agriculture and medicine are also inhibiting aromatase. Therefore, these antifungals may unintentionally disturb the balance of androgens and estrogens. Until now, it is not clear whether this effect is compensated by an increased expression of aromatase or by other unknown mechanisms.

The broad use of biologically active compounds in human therapy as well as in nonhuman applications may involve some risks, as exemplified by emerging antibiotic resistance. In agriculture, fungi and yeast are well known to develop resistance to azoles, and some molecular mechanisms of resistance development have been described. The significance of the agricultural azole resistance for human clinical antmycotic therapies has been discussed in Europe, but is not clarified yet. The actual target enzyme of azole antifungals, the fungal sterol 14[alpha]-demethylase, is expressed in many species including humans, and it is highly conserved through evolution. Hence, it seems reasonable to assume that most of theazole antifungals used in agriculture and medicine as well as azoles used in management of breast cancer also act as inhibitors on human sterol 14[alpha]-demethylase to an unknown extent. The toxicologic profiles of individual azole fungicides provide evidence for endocrine effects. In fact, many of these fungicides have effects on prostate, testis, uterus, and ovaries as well as on fertility, development, and sexual behavior. The current database does not allow us to establish causal relationships of these effects with inhibition of sterol 14[alpha]-demethylase and/or aromatase, but the overall view strongly suggests a connection with disturbed steroidogenesis.

Zam et al; Environmental Health Perspectives - 3/1/2003

Some azoles have been associated with prolongation of the QT interval on the electrocardiogram.

Prolonged exposure to the 5-nitroimidazole derivative, metronidazole, has produced peripheral neuropathy. Increased chromosome aberrations were noted in patients following prolonged treatment with high doses of metronidazole. When administered orally, metronidazole significantly increased the incidences of lung tumours in mice of each sex, of lymphomas in female mice and mammary, pituitary, testicular and liver tumours in rats. Breast and colon cancer have occurred in individuals administered orally, metronidazole significantly increased the incidences of lung tumours in mice of each sex, of lymphomas in female mice and mammary, pituitary, testicular and liver tumours in rats. Breast and colon cancer have occurred in individuals with Crohn’s disease treated with high doses for extended periods.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>tinidazole</td>
<td>19387-91-8</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surrounding areas, send the patient to a hospital together with a copy of the MSDS.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.
INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN
- for poisons (where specific treatment regime is absent):

BASIC TREATMENT
- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT
- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.
Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other
pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- **Glasses:** Chemical goggles.
- **Gloves:**
- **Respirator:** Particulate
- **Joint protection kit:**
- **Foot protection:**

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS
- Environmental hazard - contain spillage.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confine the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
■ Avoid all personal contact, including inhalation.
■ Wear protective clothing when risk of exposure occurs.
■ Use in a well-ventilated area.
■ Prevent concentration in hollows and sumps.
■ DO NOT enter confined spaces until atmosphere has been checked.
■ DO NOT allow material to contact humans, exposed food or food utensils.
■ Avoid contact with incompatible materials.
■ When handling, DO NOT eat, drink or smoke.
■ Keep containers securely sealed when not in use.
■ Avoid physical damage to containers.
■ Always wash hands with soap and water after handling.
■ Work clothes should be laundered separately.
■ Launder contaminated clothing before re-use.
■ Use good occupational work practice.
■ Observe manufacturer’s storing and handling recommendations.
■ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
■ Do NOT cut, drill, grind or weld such containers
■ In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
■ Glass container.
■ Polyethylene or polypropylene container.
■ Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
■ Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>tinidazole (Tin oxide (as Sn))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

MATERIAL DATA

TINIDAZOLE:
■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.
NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION
Consult your EHS staff for recommendations

EYE
- When handling very small quantities of the material eye protection may not be required.
 - For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 - Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
dexterity
 - Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
 - Contaminated gloves should be replaced.
 - Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
 - Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
 - Double gloving should be considered.
 - PVC gloves.
 - Protective shoe covers.
 - Head covering.
 - Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene
 - nitrile rubber
 - butyl rubber
 - fluorocautchouc
 - polyvinyl chloride
 - Gloves should be examined for wear and/ or degradation constantly.

OTHER
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PHYSICAL PROPERTIES

Solid.

State

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>260.6 - 262.4</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Molecular Weight

247.3

Relative Vapor Density (air=1)

Not applicable

Viscosity

Negligible

Solubility in water (g/L)

Partly miscible

pH (as supplied)

Not available

pH (1% solution)

Not available

Vapour Pressure (mmHG)

Negligible

Autoignition Temp (°F)

Not available

Viscosity

Negligible

Solubility in water (g/L)

Partly miscible

pH (as supplied)

Not available

Upper Explosive Limit (%)

Not available

Specific Gravity (water=1)

Not applicable

Lower Explosive Limit (%)

Not available

Relative Vapor Density (air=1)

Not applicable
Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Avoid reaction with oxidizing agents.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

tinidazole

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (rat) LD50: 2710 mg/kg
Nil Reported

Intraperitoneal (rat) LD50: 2720 mg/kg

Subcutaneous (rat) LD50: 3000 mg/kg

Intravenous (rat) LD50: >250 mg/kg

Oral (mouse) LD50: 3200 mg/kg

Intraperitoneal (mouse) LD50: 2730 mg/kg

Subcutaneous (mouse) LD50: 3940 mg/kg

Intravenous (mouse) LD50: >250 mg/kg

- NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

Convulsions, cyanosis, somnolence, tremor, ataxia, haematuria, death, weight loss/decreased weight gain, changes in testicular weight, foetolethality, specific developmental abnormalities (musculoskeletal system), foetotoxicity recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TINIDAZOLE:
- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
- For azole-containing substances.
Azole fungicides and systemically used antifungal drugs directly interfere with steroidogenesis by acting as potent inhibitors of steroidogenic enzymes and are known to cause endocrine disruption mainly via this mechanism.

An important P450 enzyme involved in the steroidogenesis is aromatase. Aromatase demethylates C10 and specifically converts androstenedione and testosterone. On the protein level, the amino acid sequence homology between aromatase from fish and humans is about 50% and between rats and humans is about 78%. In mammals, aromatase is mainly expressed in the brain and the gonads, but it is also found in placental, adipose, and bone tissue. The physiologic balance between different sex steroid hormones is crucial for the development, maintenance, and function of the reproductive system as well as for the differentiation of the sexual phenotype during ontogeny. Oestrogens (estrone and estradiol) are products of the androgens (androstenedione and testosterone), and the reaction is catalysed by aromatase. In mammals, differentiation of the male phenotype depends not only on testosterone but also on estradiol generated from testosterone by neuronal aromatase in central nervous system. Therefore, disturbances in aromatase expression and/or changes in its catalytic activity are expected to exhibit negative effects on reproduction parameters.

Azole-containing compounds produce profound effects in the environment. In part this is due to inhibition of several enzyme systems including those involving sterol 14α-demethylase. Sterol 14α-demethylase is a member of the superfamily of haeme-containing cytochrome P450 enzymes involved in metabolism of endogenous and xenobiotic substances. The antifungal effect of azoles is due to inhibition of sterol 14α-demethylase in fungi and yeast, thereby blocking the biosynthesis of ergosterol. The subsequent lack of ergosterol is detrimental because ergosterol is an essential sterol component in the membranes of fungi and yeast. Sterol 14α-demethylase is not only expressed in fungi and yeast but is also found in many other species ranging from bacteria to mammals. In plants, the sterol 14α-demethylase reaction metabolises obtusifoliol and provides precursors for biosynthesis of phytosterols. In animals, the sterol 14α-demethylase reaction is part of the metabolic pathway leading to biosynthesis of cholesterol. Cholesterol in turn is the substrate for the production of many other sterols (e.g., the sex steroid hormones).

The DNA sequences encoding sterol 14α-demethylase of many fungi and yeast are known, as well as the sequences of mice, rats, pigs, and humans. On the protein level, the amino acid sequences are highly conserved along the phylogenetic tree. This fact is considered by many authors as an indication of the pivotal role of sterol 14α-demethylase in all organisms. The homology of the amino acid sequence level between rats and humans is 93% and 40% between fungi and humans. In humans, the sterol 14α-demethylase is expressed in many different tissues.
- DO NOT discharge into sewer or waterways.
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
Puncture containers to prevent re-use and bury at an authorized landfill. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible,
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: G
Hazard class or Division: 9
Identification Numbers: UN3077
PG: III
Label Codes: 9
Special provisions: 8, 146, 335, B54, IB8, IP3, N20, T1, TP33
Packaging: Exceptions: 155
Packaging: Non-bulk: 213
Packaging: Exceptions: 155
Quantity limitations: Passenger aircraft/rail: No limit
Vessel stowage: Location: A

Hazardous materials descriptions and proper shipping names:
Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:
ICAO/IATA Class: 9
ICAO/IATA Subrisk: None
UN/ID Number: 3077
Packing Group: III
Special provisions: A97

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS TINIDAZOLE)

Maritime Transport IMDG:
IMDG Class: 9
IMDG Subrisk: None
UN Number: 3077
Packing Group: III
EMS Number: F-A,S-F
Special provisions: 274 909 944
Limited Quantities: 5 kg
Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains tinidazole)

Section 15 - REGULATORY INFORMATION

tinidazole (CAS: 19387-91-8) is found on the following regulatory lists:
Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Cumulative effects may result following exposure*.
■ May possibly affect fertility*.
■ May possibly be harmful to the fetus/embryo*.
■ Exposure may produce irreversible effects*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-16-2009
Print Date: Apr-21-2010